Fork me on GitHub


AsciiMath is an easy-to-write markup language for mathematics.
Try it out in the interactive renderer:

`sum_(i=1)^n i^3=((n(n+1))/2)^2`

Getting Started

In order to get started you have two options:

  1. Use MathJax to render your formulas. MathJax is a full fledged open source JavaScript display engine for mathematics and works in all browsers.
    This is the recommended approach!

    Get started by loading the default AsciiMath configuration:

    <script src=""></script>

    Text in you HTML enclosed in ` (backticks) will now get rendered as a math formula. The math delimiters can also be customized. Check out the MathJax website for more information!

  2. Load the AsciiMath javascript file (get it on GitHub) in either the head or the body tag of your website like this:

    <script src="ASCIIMathML.js"></script>

    This file contains JavaScript to convert AsciiMath notation and (some) LaTeX to Presentation MathML. The conversion is done while the HTML page loads.

    Attention: Currently this only works in Firefox 3+ and Safari 5.1+

    While HTML5 now includes MathML as an official recommendation, the remaining browsers do not appear to be implementing it. For widest browser compatability, the use of MathJax is recommended.


Most AsciiMath symbols attempt to mimic in text what they look like rendered, like oo for `oo`. Many symbols can also be displayed using a TeX alternative, but a preceeding backslash is not required.

Operation symbols
Type TeX alt See
+ `+`
- `-`
* cdot `*`
** ast `**`
*** star `***`
// `//`
\\ backslash
xx times `xx`
-: div `-:`
|>< ltimes `|><`
><| rtimes `><|`
|><| bowtie `|><|`
@ circ `@`
o+ oplus `o+`
ox otimes `ox`
o. odot `o.`
sum `sum`
prod `prod`
^^ wedge `^^`
^^^ bidwedge `^^^`
vv vee `vv`
vvv bigvee `vvv`
nn cap `nn`
nnn bigcap `nnn`
uu cup `uu`
uuu bigcup `uuu`
Miscellaneous symbols
Type TeX alt See
2/3 frac{2}{3} `2/3`
2^3 `2^3`
sqrt x `sqrt x`
root(3)(x) `root(3)(x)`
int `int`
oint `oint`
del partial `del`
grad nabla `grad`
+- pm `+-`
O/ emptyset `O/`
oo infty `oo`
aleph `aleph`
:. therefore `:.`
:' because `:'`
|...| |ldots| `|...|`
|cdots| `|cdots|`
vdots `vdots`
ddots `ddots`
|\ | `|\ |`
|quad| `|quad|`
/_ angle `/_`
frown `frown`
/_\ triangle `/_\\`
diamond `diamond`
square `square`
|__ lfloor `|__`
__| rfloor `__|`
|~ lceiling `|~`
~| rceiling `~|`
"hi" text(hi) `"hi"`
Relation symbols
Type TeX alt See
= `=`
!= ne `!=`
< lt `<`
> gt `>`
<= le `<=`
>= ge `>=`
-< prec `-<`
-<= preceq `-<=`
>- succ `>-`
>-= succeq `>-=`
in `in`
!in notin `!in`
sub subset `sub`
sup supset `sup`
sube subseteq `sube`
supe supseteq `supe`
-= equiv `-=`
~= cong `~=`
~~ approx `~~`
prop propto `prop`
Logical symbols
Type TeX alt See
and `and`
or `or`
not neg `not`
=> implies `=>`
if `if`
<=> iff `iff`
AA forall `AA`
EE exists `EE`
_|_ bot `_|_`
TT top `TT`
|-- vdash `|--`
|== models `|==`
Grouping brackets
Type TeX alt See
( `(`
) `)`
[ `[`
] `]`
{ `{`
} `}`
(: langle `(:`
:) rangle `:)`
<< `<<`
>> `>>`
{: x ) `{: x )`
( x :} `( x :}`
abs(x) `abs(x)`
floor(x) `floor(x)`
ceil(x) `ceil(x)`
norm(vecx) `norm(vecx)`
Type TeX alt See
uarr uparrow `uarr`
darr downarrow `darr`
rarr rightarrow `rarr`
-> to `->`
>-> rightarrowtail `>->`
->> twoheadrightarrow `->>`
>->> twoheadrightarrowtail `>->>`
|-> mapsto `|->`
larr leftarrow `larr`
harr leftrightarrow `harr`
rArr Rightarrow `rArr`
lArr Leftarrow `lArr`
hArr Leftrightarrow `hArr`
Type TeX alt See
hat x `hat x`
bar x overline x `bar x`
ul x underline x `ul x`
vec x `vec x`
dot x `dot x`
ddot x `ddot x`
overset(x)(=) overset(x)(=) `overset(x)(=)`
underset(x)(=) `underset(x)(=)`
ubrace(1+2) underbrace(1+2) `ubrace(1+2)`
obrace(1+2) overbrace(1+2) `obrace(1+2)`
color(red)(x) `color(red)(x)`
cancel(x) `cancel(x)`
Greek Letters
Type See Type See
alpha `alpha`
beta `beta`
gamma `gamma` Gamma `Gamma`
delta `delta` Delta `Delta`
epsilon `epsilon`
varepsilon `varepsilon`
zeta `zeta`
eta `eta`
theta `theta` Theta `Theta`
vartheta `vartheta`
iota `iota`
kappa `kappa`
lambda `lambda` Lambda `Lambda`
mu `mu`
nu `nu`
xi `xi` Xi `Xi`
pi `pi` Pi `Pi`
rho `rho`
sigma `sigma` Sigma `Sigma`
tau `tau`
upsilon `upsilon`
phi `phi` Phi `Phi`
varphi `varphi`
chi `chi`
psi `psi` Psi `Psi`
omega `omega` Omega `Omega`
Font commands
Type See
bb "AaBbCc" `bb "AaBbCc"`
bbb "AaBbCc" `bbb "AaBbCc"`
cc "AaBbCc" `cc "AaBbCc"`
tt "AaBbCc" `tt "AaBbCc"`
fr "AaBbCc" `fr "AaBbCc"`
sf "AaBbCc" `sf "AaBbCc"`

Standard Functions

sin, cos, tan, sec, csc, cot, arcsin, arccos, arctan, sinh, cosh, tanh, sech, csch, coth, exp, log, ln, det, dim, mod, gcd, lcm, lub, glb, min, max, f, g.

Special Cases

Matrices: [[a,b],[c,d]] yields to `[[a,b],[c,d]]`

Column vectors: ((a),(b)) yields to `((a),(b))`

Matrices can be used for layout: {(2x,+,17y,=,23),(x,-,y,=,5):} yields `{(2x,+,17y,=,23),(x,-,y,=,5):}`

Complex subscripts: lim_(N->oo) sum_(i=0)^N yields to `lim_(N->oo) sum_(i=0)^N`

Subscripts must come before superscripts: int_0^1 f(x)dx yields to `int_0^1 f(x)dx`

Derivatives: f'(x) = dy/dx yields `f'(x) = dy/dx`
For variables other than x,y,z, or t you will need grouping symbols: (dq)/(dp) for `(dq)/(dp)`

Overbraces and underbraces: ubrace(1+2+3+4)_("4 terms") yields `ubrace(1+2+3+4)_("4 terms")`.
obrace(1+2+3+4)^("4 terms") yields `obrace(1+2+3+4)^("4 terms")`.

Attention: Always try to surround the > and < characters with spaces so that the html parser does not confuse it with an opening or closing tag!

The Grammar

Here is a definition of the grammar used to parse AsciiMath expressions. In the Backus-Naur form given below, the letter on the left of the ::= represents a category of symbols that could be one of the possible sequences of symbols listed on the right. The vertical bar | separates the alternatives.

v ::= [A-Za-z] | greek letters | numbers | other constant symbols
u ::= sqrt | text | bb | other unary symbols for font commands
b ::= frac | root | stackrel | other binary symbols
l ::= ( | [ | { | (: | {: | other left brackets
r ::= ) | ] | } | :) | :} | other right brackets
S ::= v | lEr | uS | bSS             Simple expression
I ::= S_S | S^S | S_S^S | S          Intermediate expression
E ::= IE | I/I                       Expression